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KEPLERIAN MOVEMENT AND
HARMONIC OSCILLATORS

By Claude A. Burdet in Zurich

Intr oduc tion

For some years, a group of methods have been found under the term

regularization, whose aim is to eliminate the singularity from the field of gra-

vitational force in r = 0. By various transformations, such efforts permit

replacing the equations called "classic" from the movement

(1) .. M 
x+' r x= P.

where r is the distance r 2 = £ x and = dt), describing the problem of
i=l

the two bodies subjected to any disturbing force P x, x, t.

By virtue of the extreme stability (analytical and numerical) and still

other properties which we shall expose in what follows, differential linear

equations with constant coefficients (harmonic oscillators) are particularly

attractive and one will naturally try to return'(l) to this type. A similar result

has been established with success in /1 / then in / 2, / 3 /.

The first paragraph is devoted to a brief presentation of the method

described in greater detail in / 3/. Then, in paragraph 2 a new transformation

of time t furnishes another harmonic oscillator whose principle advantage is

also to permit eliminating the l/r singularity which appears with certain dis-

turbing forces (especially those due to the flatness of the Earth).

1. The Central Method

The solutions, of the non-disturbed system

(2) .
x + r x= 

l
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are conics whose center is at the origin.

The central method consists of determining such orbits (conics) with the

help of a harmonic oscillator fixed at the center of the conic. The square of the

frequency w 2 determines the type of conic

w2 '0: ellipses,

w2 = 0: parabolas,

w 2 , 0: hyperbolas.

Tridimensional harmonic oscillator: Let's designate by C the coordinates

of the center of the oscillator and the position of the material point by x in a

system of cartesian coordinates. As a function of an independent variable s,

the oscillating movement is then governed by the differential equations

(3) x' + wz( .. ) 0,
d

where ' =ds , w 0.

It is easy to establish that the material point describes a conic and that

the origin x = 0 is located in its center.

Now let's transform the disturbed system (1) into a system of type (3) by

introducing an imaginary central time s 1 as an independent variable, defined

beginning with physical time t by:

(4) dt = rdsl.

With the help of the Laplace Vector

(5a) A = v Z - (, x x

and Keplerian energy
3

(5b) w2 =_ v 2 ,where v 2 = xi
.

i=l

) ~The n~otation (l, ) designates the scaler of the vectors and-.
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(We have posed the constant M equal to 1 without loss of generality) the system

(1) allows itself to be brought back to

(6a) | + w?2 + A = r P,

(6b) t' = r.

The detail of transformation presents no difficulties and can be found again in / 3/

If it is remembered that the quantities w2 and A are integrals (= elements

for constants) of nondisturbed Keplerian movement, the goal has been reached

since these constants calculated beginning from initial conditions. The oscillator

x" + w + A = 0

describes a conic of

half of the full axis a = ,

(7) center c - 72 A,

eccentricity e =| A I.

But the oscillator (6) is disturbed (P * O); therefore we must still determine

w 2 and A by simultaneously integrated (8) with (6):

(8a) Al 2( P, x')x (x,

(8b) (w2 = 2(P, x'

The system (6), (8) constitutes a system of order 11 for integration of the

disturbed Keplerian movement. This raised order should not cause concern,

for the experiment shows that the order of the system plays a much less impor-

tant role than the type (here linear) of the differential equations, concerning the

exactness of numerical integration.

The introduction of the imaginery time s i plays, in addition to, the role

of an automatic control, as a function of the distance r, of the value of the

integration step At = r A s = rh where h is the numerical step.

-3-
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On the other hand, let's mention here that while this does not constitute

an advantage for practical cases, that this method also permits integration of a

collision (r = 0).

In Appendix I, the reader will find the elements which can be introduced

for the central method, and the differential equations which they satisfy, thus

permitting replacing the integration of the coordinates x and of the time t.

In a general way, the integration of elements is to be advised, especially when

the disturbing forces are weak. Finally let's cite the differential equation for

the distanced-r-

(9) |r" + wZr - 1 = r ( ) 

which is also of type (3) and which renders valuable services for the integration

of the time.with the help of an element (Appendix I).

Z. The Focal Method

The relative position of the two bodies which we have represented by the

vector x can also be characterized by the distance r and the unit vector y

indicating the direction of . This permits defining a new harmonic oscillator

characterizing the variables y and u = r; its center is found in x = 0, in

other words at the center of gravitational attraction which is also the center of

the solution conics of the system (1).

In order to do this, let's define again beginning from time t and imaginery

focal time s 2 by:

(10) dt = r 2 ds 2

x 1 one has& .. +
Since y - , one = x y r) r.y + ry + ry and the system (1) becomes

(while still placing M = 1)

(11) yr + 2; +'r.+ 7 y = P
r

-4-
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On the other hand

d 1 d

d2 1 d2 2r' d d=
=dt2= d -4 d-2- ds w(here ' d22 ds2:2

involve s

(1Z A, , 2r' Z, +
(12) +"- 2r' - + r y + = r 3 P

y' compensate each other and disappear.

Now let's multiply (1) scalarly by x

(13) (x, x)+ r (P, x

in order to obtain

(14) r'r - v2 + r2 +r = Px

since r2 = (x, x) implies

+Zrr + ( x .x .

Finally,' let's introduce s 2 as an independent variable in (14)

(15) 2 r - p = r 2

with

(16) p = r2 (v2 _) = () , 

from (15) and ('12) onedraws

(17a) Y''+ PY r3 (P )

(17b) u" + pu -1 -r ( y,

(17c) t'= r 2 ,

if one places u = in (15).
- r

Again, while noting that p is an element of nondisturbed Keplerian move-

ment, one can recognize in (17) a harmonic oscillator of frequencyp. And

-5-
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And', since we have a disturbing force P$0, the differential equation must still

be added

(18) p' = p r3 ( , 

obtained by differentiating (16).

The system (17), (18) is of order 10, and its simultaneous integration

furnishes the, disturbed Keplerian movement desired.

The same remarks can be made here as for the central method concerning

the precision of numerical integration, since the differential equations are

similar in all points. Automatic control of the step varies herewith rZ, and

Appendix II indicates how the adequate elements can be introduced. However,

some pecularities deserve tDe emphasized for the focal method:

The parameter p is J0 for all types of conics, p = 0 corresponding to

rectilinear movement.

The focal method does not permit integration of a collision, for an

infinite time sz would be necessary in order to arrive at the collision itself

(r = 0).

When the disturbing force P is in the form

P r t av

the right members (disturbances) of the oscillators of (17) take the form

which means that the denominators - have become polynomials uv of trigono-

metric functions in s2. That is an advantage of this method, for the case

where P includes the disturbance due to the flatness of the Earth, for example.

The order of(17) (18) is 10 but it is necessary to take into account the

- 6 -



- 7 - NASA-77

identi tie s

(y, Y) = 1, (y , y!) =0, and p = (', y'),

which permit reducing it and can render remarkable service in the calculation

of the right members (cf. example).

Example: Disturbance due to the flatness of the Earth. We illustrate

the focal method by this example where we shall limit development in Legendre

polynomials of the disturbing forces, to the initial terms (those of J2); the terms

of higher order will be treated in an identical manner. Therefore let the force

be

P = f ) + g (z) 3],

where

1
f(z) = 2(15 y3 3),

g (z) = - 3Y 3 ,

c = constant.

i3 = unit vector of axis x 3 (toward the north), the plane (xl, xZ) being equatorial.

For the right members of (17) (18), one has

3) I(V _( -A
(17a) r 3 (- P, Y r (gi 3 -gy 3 ) = cgu (i 3 -Y3Y)

z V, c2 (f + 9Y)Z 2(l 2
(17b) r2 P - r (f + gY 3 ) = - cu (f + Y3 g) = cu2 ( - 3y

3J \ c
(18) r3 (P, ) =r (f(Y, Y') + gy'3 ) = cugy'3'

3. Conclusions

In this method, the reader will be able to find again the most significant

characteristics of the two systems of differential equations (central and focal)

which permit replacing the "classic" equations, for the integration of the general

problem of the two bodies.
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All the differential equations governing nondisturbed Keplerian

movement are linear, with constant coefficiets (these coefficients are elementsof the movement) and the disturbed movement can therefore, be treated with
the help of the variation method of the constants.

e -ntrliciie eccentricity -

pla e,(t-eJ ' Earth

Figure 1. Passage autour do la Terre (orbite ttes excentrique)

Figure 1. Passage around the Earth (very eccentric orbit)

ss' classic

...... 
· , __ ' \ca/central

Figure 2. Comparaison des erreurs d'int6gration numerique (orbite eirculaire)

Figure 2. Comparison of the errors of numerical integration(circular orbit)

-8-
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typical err.or. c 

calc ula te dpoin/s
points

focal |-

c's~~g i:. passage,a PhL ,r at the perigeemuope: :

central antmle
Alwiviquc typical error.

cna Lpassage at
fcentral te a a-oee a

.2.. 1.4 . 2.8 1 .0 .Z2 la £0 U &. £ et
. Figure 4. Comparaison des erreurs d'int6gration numfrique (orbite fortement excentrique)

Figure 3. Comparison of the errors of numerical integration
(highly eccentric orbit)

Thus, one can define in a mathematically naturalmanner, new elements for

Keplerian movement which enjoy geometric and mechanical properties common

to all types of orbit (circular, elliptical, rectilinear, parabolic and hyperbolic)

so well that all these cases can be treated by a single set of formulas. At the

time of a disturbed Keplerian movement, these elements satisfy, in addition,

differential equations of simple form which thus permit the use of an economical

and precise integration method of the disturbances f the elements. The integra-

tion of the elements is still to be advised in regard to the integration of thetion of the elements is still to be advised in regard to the integration of the
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coordinates (x, t), unless the disturbing forces are not very large.

The use of a fixed reference system with cartesian coordinates

guarantees the application of these methods (central and focal) in all cases,

without fear of critical values for the inclination of the orbit, or numerical

indetermination of the formulas utilized. On the other hand, the disturbing

forces P do not undergo any transformation and can be introduced just as they

are. Orbits of all types can be integrated (also numerically) without fear of

degeneration. The integration of a collision with the central body is, however,

only possible with the central method.

For a numerical integration, the transformations of the independent

variable possess a supplementary advantage since they introduce, in the differ-

ential equations themselves, an automatic control of the numerical step of

integration, as a function of the distance r (or r 2 ). The schemas opening out

on several steps (multi-step methods) therefore become particularly advan-

tageous since it is no longer necessary to modify the numerical value of the

integration step.

From the analytical viewpoint, the focal method possesses the pecularity

1
of representing the quantity r = u by a simple trigonometric expression. For

the case where the disturbing forces are due to the flatness of the Earth, for

example, that means that one can develop these forces (which contain - factors)

in a series of Fourier finites (Fourier polynomials). By virtue of the multiple

possibilities offered by differential linear equations with constant coefficients,

such disturbances can therefore be integrated directly without toomuch difficulty.

The frequencies of the central methodwand focal method"p. Without

making a detailed study of this type of movement, it is obvious that the frequency
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of a harmonic oscillator is a principle source of instability: in error, no

matter how small, affecting the value of the frequency leads, after a certain

time lapse, to diametrically opposed results in integration. Besides, this

fact is to be placed in relation with the orbital stability of the Keplerian move-

ment / 3/. It is suitable, therefore, to proceed to the determination of the

quantities w2 and p with most particular care.

If the user decides to take this state of fact into account, he can make

use of the following processes:

a) Utilization of a more precise method of numerical squaring for the

frequency than for the other quantities. This increases precision without per-

ceptibly changing calculation times.

b) Integration of the frequency by a procedure of the type recommended

by Encke for "classic" equations. One is given (in the first approximation) a

function 2Z (s 1); next, beginning with 2Z (s 1) and with the Keplerian osculatory

frequency w 2 one defines:

2 2 2
A w : = w (s

1 ) - (Sw).

This quantityAw_ can therefore be determined by integration of

dsl (&w) = (Px + dSl

and, in the measure where w2 (s1) has been chosen correctly, the quantity Aw 2

is of the second order.

The oscillator itself becomes

" +w2x A= rP = wx,

r" + 2 r - 1 r ((P ) + w 2 ),
where one will notice that the base frequency w is better adapted to the disturbed

movement w.

-11 -
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In like manner, one will have for the focal method, withp (s2):

b P: = P (sZ) - p (sz),

where p is the Keplerian parameter of the osculatory orbit. Moreover

- d p ~p-Zr 3 (, 7'ds
2

J p ds2

with

" +;Py = r3 P + (hp - r3 ( y

u + pu - 1 APu - r (PI y).

A particular case of this process still deserves being analyzed in more

detail. It is the case

w2 = constant (or = constant).

The experiment shows indeed that (numerically as well as analytically), this

special case leads to better results. Moreover, the important practical case

where the disturbing forces (or a part of these) are conservative is exactly

this type.

r av
Therefore let the forces be P = - , where V is a conservative

potential. One has

dd =(w 2 )= - 2 dV
ds, (&' 1 x ds

or

w 2 = _ 2V.

Therefore

2 2 +aw 2 = - E -2V = - E = constant,
= WK pler Kepler tot

since the disturbance is conservative; for the oscillator one has, in addition,

xi' +~ +A- = 9 (r2V),
ax

r"+ wr - 1 = - (r).
dr
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This is equally possible for the focal method, and one has:

P= _v = _u av, + uZ vy

On the other hand, this particular case permits differentiating the forces P

and one will then place

T: = r 3 ,, y. p + p + r r3 = constant,

Therefore

d (A p) = 2r 3 ( y dS2 (
ds 2 ' / ds 2 '9U

with

Y" + py = - rZ +Apy,

u" + u - 1 = pu.

Here one will be able to choose as a value of p = constant the average value

is the time p, for example.

To conclude, let's mention that the central method permits regularizing

the restricted problem of the three bodies. Moreover, if one admits an,'

elliptical movement for the Moon, one must then apply the focal method to

this movement. And one can, therefore, without any other difficulty, consider

a disturbed movement for the Moon (flatness of the Earth, solar attraction, etc...)

as well as supplementary disturbances (flatness of the Earth, attraction of the

sun, resistance of the air, solar radiation, etc...) for the satellite of negligable

mass. The theoretical and experimental results of this problem depart somewhat

from the limits of this article and are not presented here.

Appendices

The interested reader, by a direct application of the methods exposed

above, will find, in what follows, the necessary basis for a concrete application.
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The intermediary calculations have been omitted, but they present no major

difficulties and can be easily found again. For each of the two methods, one will

find, in the first place, the systems of differential equations for the osculatory

elements. Next an equivalent system, but of simpler form, is described.

Appendix I: The elements of the central method. In order to obtain

osculatory elements, it is necessary to depart from the Keplerian frequency:

wand from the central oscillator which is associated with it:

x" + wZx + A = f = r 2 P,

r" + w 2 r - 1 = f4 = r (P x),

t' = r.

In order to take all the cases into account w 2_ 0, w2 < 0, w 2 = 0 let's place

x = o(s 1)B2(wZ, sl) +B (sl) Bl(wZ, s l) + ' (sl),

x'= C(sl)Bl(w2, s
l ) + (S1)BO(w z , sl),

r = l(s1()BZ(w 2 , s l ) + 6Z(sl)Bl(w2 , sl), + &3(sl),

r '= l(s 1)Bl(w 2 , s ) + 62 (s 1 )BO(w2 , sl),

t =81(Sl)B3(w Z
, sl) +&2(Sl)B2(w

Z
, s

l ) + A3( 1) 1 + 0(Sl),

with:
6

1 6and -1 
wi 3 z and y w2 A ).

The special functions B(q, s) are regular and well defined for all the real

values of q and s; they are defined by:

BO(q, s) = cos Vqs',

Bl(q, s) = ' sin rqs,

BZ(q, s) =-( - BO(q, s) ),
q

B3(q, s) =-(s - B1 (q, s) ),
q

1B4(q, s) = (3 B3 (q, s) + B1 (q, s) B2 (q, s))
q
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By a calculation which can be found again in/ 3 / one finally obtains

(w 2 )' = - 2 C1,

= (r2w2 Bi + C2 BO) P + (C3 BO - C1 Bi) x' - C1 s B,

j' = (r2 BO - C2 B1) P - C3 B1 x' + B12 C1 + C1 B30L,

= (C2 B2 - r 2 B1) P + C3 B2 ' + Cl (B2 2 c+ (B3 - B B2)),

6 = rw2 C3 B1l - Cl (w Z ( 1 B2 2 + ZBB3) - 2 3 BO),

6
' = rC3 BO - C1 (6 (B1 B2 - B3) +6 2 B1 2 + 26 3 B1),

61 = - rC3 B1 + C1 (81 B2 2 + 8 2 B3 + 2 S3 B2),

80 = rC3 B2 - C1 (6 1 B5 + 2 3 B3 + B2 2 ),

where C1 =Px' C2 = (x,x') = rr', C3 = '), and where all the special

functions B are taken with proofs (w 2 , sl) with B3 (q, s) = 4 B3 (4q, s).

These elements still verify the identities

J =6 -2 -' 3

dl =L w-263=(lW2(, 4)),

83 =(7B) i/(1+81 '

coming from the relations

2
r = (x, x) and rr' (x, x').

These identities can, therefore, be utilized to reduce the total order of the

system, and consequently the number of squarings, or then even as controls

of the precision of numerical integration.

Beginning with this method of integration of osculatory elements, one

can deduce a more precise and more economical method (in time of calculation);

- 15 -
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for that, it is necessary to consider an oscillator with a constant base

frequency w

Ix" + 2x + A = f = rZ + aw2,

w r - 1 f 4 = r((P, x)+w2).

The solution remains similar in all points, only the differential equations

change, which become:

(Aw2 )' = 2 C1,

=' = w 2 Bl f - BO A',

= BO f - B1 A',

= - B1 f - B2 A',

1 - 3w 8 3 = w'2 B1 f4

8' = BO f4,2

80' = BZ f4,

one will replace A' in all these equations by the expression

A' = 2 Cl x - C2 P - C3 x.

Here also one will make use of the identity

;=&ZB - +3' +rAW 2 "

and the relations

r = (x, ') and rr' = (x, x')

can also serve as a control.

Remarks. In the form presented, the osculatory method of integration

includes from 8 to 14 squarings, according to whether one utilizes the identities

among elements or not. The total order of the "classic" system, however, is

equal to 6; it is, therefore, obvious that our elements contain a certain redundance.

- 16 -
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Indeed, w 2 can also be expressed as a function of A and of ; and, besides,

the eccentricity e can be expressed iin two distinct manners as a function of

a, and , which furnishes a supplementary identity. It is, however, advan-

tageous to renounce these identities, for their use increases the calculation

times and introduces a source of needless numerical error.

On the other hand, the experiment has shown that the numerical

behavior of the method (errors due to numerical rounding off, calculation times,

etc... ) is much less sensitive to an artificial increase of the number of squarings

than to the use of identities which are mathematically exact but numerically

weak.

Moreover, it is very useful to dispose of, in addition to the numerical

solution, a certain number of controls which permit estimating its real value.

Appendix II: The elements of the focal method. In a manner highly

analogous to the central case, it is necessary, in order to obtain osculatory

elements in the focal method, to depart from the Keplerian frequencyp

and from the focal oscillator which is associated with it.

-A I I = g = r3 =Y Y)

u" + pu - 1 = g = - r
2

P y, 

t' = r =2 .

In order to take all p O;, into account, one defines the solution by:

y = (s 2 )B0(p, s 2 ) + (s2) Bl(p, sz),

y' =-pr(s 2)Bl(p, s2 ) + (s 2)BO(p, S2),

= 6 1 (s 2 )B2(p, S2 ) +8 2 (s 2 )Bl(p, s2) + 83(s2),

ul' =l(S 2 )Bl(p, S2) + 6 2(S2)BO(p, S2),
1 - T

with& 3 = . Then one obtains the equations
P

- 17 -
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p' = 2r 3 (P, ') ,

' = Blg - C (Blz+ B4 B1

= BO g + Cl((s2 + BI BO) + p B12 l)
= p B1 g4 + C1 (6ip B2 2 -_ Zd3 BO +62P B3),

62 = BO g4 + C1 (Sl(B1 B2 - B3) + 2d 3 B1 + 82 B12),

63 = - B1 g4 - C1 (d
1

B22 + 263 B2 +d' 2 B3)

where C1 P I and with, B3 = 4 B3(4p, sZ), all the special functions B being

assumed with proofs (p, s2 ). And again, one can convert here the identities

(y, y) = 1, (y, ') = O0 and (7', y') = p

to osculatory identities

w= (1 +8l1 )a 3 -8,

(, d) = 1,

(iS) = p

(dab)=o.
The reduced focal method is produced by a focal oscillator of constant

base frequency -P,

" + py = r r -P Y

u" +u - 1 = g 4 = PU -r , ) .

The solution is still expressed by the same expressions as previously for the

osculatory focal method, but the differential equations become

hp. = -2r 3 (P. Y') 'as' = =

= = B1 g,

B, = BOg,

01~ P 83 =o B1 g9,

4:52 = BO g4.
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Up till here we have left aside the integration of physical times t;

the latter can also be brought back to the integration of an element 80 in the

focal method, as for the central method.

One places for this purpose

t = 2 B6(w 2 , Z) -ZZp + + 8

where

wZ: = (1 + t 1 ) 83 

X: = B7 (p, 2

Z: = (1 +1) X +S2

and one has for a0 the differential equation

=WW , 2 4pX 2 _ P 1 z1z} 'X + 8Zp2
0=wt t8 (w~, Z)- (22 +W 2)2 21 + ZZ + WZ

+ZZ w (X - 1 + 1 B9(p, sZ )

the initial conditions being

80(O) = to - 2 B6 (w2 (O), Z(O) ).

In the reduced method, where p is a constant, this differential equation is

brought back to

4PX 2
8 = g4 (u' (z2 + w2 )2 - B8 (w2 , Z) - z 2 + w2 +

The special functions B utilized here are also of a type which permits

integration of all orbits (even rectilinear, but without collision). By definition,

one has

B6 (wZ, Z) +2 war

B7(p, s)

B8(w 2, Z)

-Z 2 1 + Z w2 ' 2 4 * 6 w 4

= ZZ + -wz \3 Zz + w z 3 7 5 (ZZ +w) 3 5 7 (ZZ )
1

J= ; tan rp s,

1 4Z
-= 2 6 B6 Z ( Z) + ( Z + w)

- 16 Z (1 1 6w 6 8 w
_ z

+
.W Z - + (Z+ w 7. 9 ( 2+w) +

(2! + (Z)
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Remarks. For the two methods (central and focal), all the special

functions B ought to be programmed with care, in such a way as to guarantee

values possessing the maximum precision of the ordinator utilized; in order

to do this, it is necessary, according to the value of the parameters, to

utilize, one after the other, the standard tPigonometric functions or the

Taylor series corresponding to special functions.
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